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1 Search filters
1.1 Search filter for Pubmed
(”individual patient” OR ”individual participant” OR ”IPD” OR ”patient level data” OR “patient-level
data”)
AND
(”meta-analysis” OR ”meta-analyses” OR ”systematic review” OR hierarchical OR cluster OR ”multi-
level” OR ”mixed model” OR ”mixed effect” OR ”mixed effects” OR ”random coefficient” OR ”random-
effects model” OR ”random-parameter model”)
AND
(”survival” OR Cox OR ”Royston-Parmar” OR Weibull OR Failure OR Hazard OR hazards OR AFT
OR Frailty OR ”time-to-event” OR ”Kaplan-Meier” OR Gompertz)

1.2 Search Filter for advanced search of Web of Science
(TS=((”individual patient” OR ”individual participant” OR ”IPD” OR ”patient level data” OR patient-
level data)
AND
(”meta-analysis” OR ”meta-analyses” OR ”systematic review” OR hierarchical OR cluster OR ”multi-
level” OR mixed model OR mixed effect OR mixed effects OR random coefficient OR random-effects
model OR random-parameter model)
AND
(survival OR Cox OR Royston-Parmar OR Weibull OR Failure OR Hazard OR hazards OR AFT OR
Frailty OR time-to-event OR Kaplan-Meier OR Gompertz)))

1



2 Code used in applied example
This code is also available from https://github.com/VMTdeJong/Epilepsy

2.1 The data
library(survminer)

# Kaplan meier
km <- survfit(Surv(SEZTIME, SCENS) ~ Drug + Epilepsy, data = epi)
ggsurvplot(km)

# Some new functions
# Center a variable
Center <- function(x, trial.id) {

for (trial in sort(unique(trial.id)))
{
selection.id <- trial.id == trial
selection <- x[selection.id]
x[selection.id] <- selection - mean(selection, na.rm = T)

}
x

}

# Trial mean of a variable
TrialMean <- function(x, trial.id) {

for (trial in sort(unique(trial.id)))
{
selection.id <- trial.id == trial
x[selection.id] <- mean(x[selection.id], na.rm = T)

}
x

}

# Computing the centered and trial mean variables
epi$EPTYPE.trialmean <- TrialMean(epi$EPTYPE, epi$TRIAL)
epi$EPTYPE.center <- Center(epi$EPTYPE, epi$TRIAL)

2.2 Model fitting
# Some new functions
# Extract the standard error from a model fit.
se <- function(object)

sqrt(diag(vcov(object)))

# Extract the confidence interval from a coxme fit.
confint.coxme <- function(object, level = .95, digits = 2) {

z <- qnorm(1 - (1 - level)/2)
b <- coef(object)
s <- se(object)

ci.lb <- b - z * s
ci.ub <- b + z * s

out <- data.frame(b, ci.lb, ci.ub, s, exp(b), exp(ci.lb), exp(ci.ub))
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out <- round(out, digits = digits)
colnames(out) <- c("coef", "ci.lb(coef)", "ci.ub(coef)", "se(coef)",

"exp(coef)", "ci.lb(exp(coef))", "ci.ub(exp(coef))")
out$`Wald p` <- round(pnorm(b/s, lower.tail = F) * 2, digits + 1)

out$CI <- paste(out$`ci.lb(exp(coef))`, " to ", out$`ci.ub(exp(coef))`,
sep = "", collapse = NULL)

out
}

# Running the Cox models
library(coxme)
cox.drug.ri.re <- coxme(Surv(SEZTIME, SCENS) ~ DRUG + (1 + DRUG |TRIAL),

data = epi)
cox.drug.ri.re.cov <- coxme(Surv(SEZTIME, SCENS)

~ DRUG
+ (1 + DRUG |TRIAL)
+ EPTYPE.center
+ EPTYPE.trialmean
+ EPTYPE.center : DRUG
, data = epi)

# Applying our functions to obtain confidence intervals for the models
confint(cox.drug.ri.re)
confint(cox.drug.ri.re.cov)

2.3 Heterogeneity
The function MHRnormal is adapted from Austin PC, Wagner P, Merlo J. The median hazard ratio:
a useful measure of variance and general contextual effects in multilevel survival analysis. Stat Med.
November 2016. doi:10.1002/sim.7188

# Let var.re denote the estimate variance of the random effects,
# following a normal distribution.
MHRnormal <- function(var.re) exp(sqrt(var.re) * qnorm(0.75) * sqrt(2))

# Computing the MHR
MHRnormal(cox.drug.ri.re$vcoef[["TRIAL"]]["DRUG","DRUG"])
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